流式大数据分析与智能诊断技术

发布时间:2019-07-10

面对大量、高速、持续的动态数据,挖掘、分析数据中蕴含的异常信息,实时、准确地掌握设备健康状态的诊断过程。

(一)主要研究内容

1. 基于大数据框架的流式数据分布式实时处理技术

2. 基于离线深度网络和在线增量网络集成策略的数据流异常检测技术

3. 小失效样本约束下复杂设备智能故障诊断与寿命预测技术

4. 基于融合模糊理论高效推理引擎的复杂系统实时智能专家系统

(二)主要成果

面对海量、高速、持续的动态数据流,融合大数据框架、集成学习框架、诊断推理框架,以及智能机器学习技术,攻克了数据流在线自适应学习、高维数据特征提取和小失效样本模式识别等难题,搭建流式大数据分析与智能诊断平台,快速感知数据中的异常信息、准确定位设备故障状态、预知设备故障发展趋势,如图2所示。该平台异常检测精度高达95%以上,是空间任务安全、可靠开展的重要基础,也将成为航空航天、能源、交通等其他工业系统智能管理的重要推力。

2 流式大数据分析与诊断平台

(三)联系人

     座机:010-82178871     邮件:songlei@csu.ac.cn

段江永   座机:010-82178870     邮件:duanjy@csu.ac.cn


附件下载:

  010-82178817  所长信箱:csu@csu.ac.cn
  纪检信箱:jijian@csu.ac.cn举报电话:010-82178815
  010-82581990  北京市海淀区邓庄南路9号 (邮编:100094)